organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Basavegowda Nagaraj,^a Hemmige S. Yathirajan,^a Padmarajaiah Nagaraja^a and Daniel E. Lynch^b*

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^bSchool of Science and the Environment, Coventry University, Coventry CV1 5FB, UK

Correspondence e-mail: apx106@coventry.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.002 Å R factor = 0.038 wR factor = 0.103 Data-to-parameter ratio = 15.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-(Carbamoylmethyl)cyclohexanecarboxylic acid

Molecules of the title compound, $C_9H_{15}NO_3$, form a twodimensional hydrogen-bonded network, *via* $O-H\cdots O$ and $N-H\cdots O$ interactions, which runs parallel to the *bc* plane. In this structure, neither the carboxylic acid groups nor the carbamoyl groups are involved in dimer formations. Received 22 February 2005 Accepted 25 February 2005 Online 11 March 2005

Comment

The title compound, (I), is used as an intermediate in the synthesis of biologically active heterocycles (LaRoche & Helmers, 2004). A search of the Cambridge Structural Database (Version 5.26; Allen, 2002) reveals that there are 11 structures of 1,1-disubstituted cyclohexane with a carboxylic acid group as one of the substituents. Of these, only three contain 1-cyclohexanecarboxylic acid itself. The remaining structures each contain an amino group (as the second substituent), with further attached groups on the amino N atom. There are no structures similar to 1-(carbamoyl-methyl)cyclohexane.

NH₂ NH₂ (I)

Molecules of the title compound (Fig. 1) form a twodimensional hydrogen-bonded network, via O-H···O and N-H...O interactions, which runs parallel to the *bc* plane. Hydrogen-bonding associations are listed in Table 1. The carboxylic OH group hydrogen bonds to the carbamoyl O atom of an adjacent molecule while the amino group of that molecule, in return, hydrogen bonds with the carbamoyl O atom of the first molecule. These two associations form a hydrogen-bonded ring motif $[R_2^2(11) \text{ graph set (Etter, 1990)}]$ that, when repeated, propagates the hydrogen-bonding network in the *b*-axis direction. An N-H···O association between the second amino H atom and an adjacent carboxyl carbonyl O atom in the c-axis direction generates the twodimensional network. Interestingly, in this structure, neither the carboxylic acid groups nor the carbamoyl groups are involved in $R_2^2(8)$ graph-set dimer formations, with like groups or with each other.

Experimental

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Cyclohexanone (1.04 g, 10 mmol) was treated with ethyl cyanoacetate (1.06 g, 10 mmol) in the presence of NaOH (5 ml, 10%)

aqueous solution). The resultant compound was further treated with NaCN (0.49 g, 10 mmol) in ethanol (5 ml), and hydrolysed to obtain the title compound. Crystals were grown from methanol.

 $D_x = 1.307 \text{ Mg m}^{-3}$

Cell parameters from 2268

Mo $K\alpha$ radiation

reflections

 $\theta = 2.9-27.5^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$

T = 120 (2) K

 $R_{\rm int} = 0.030$ $\theta_{\rm max} = 26.0^{\circ}$

 $h = -16 \rightarrow 16$

 $k = -9 \rightarrow 9$ $l = -10 \rightarrow 10$

Prism, colourless

 $0.65 \times 0.30 \times 0.10 \text{ mm}$

1627 reflections with $I > 2\sigma(I)$

 $w = 1/[\sigma^2(F_o^2) + (0.0503P)^2]$

Extinction correction: SHELXL97

Extinction coefficient: 0.048 (6)

+ 0.4339P] where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}$

 $\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Crystal data

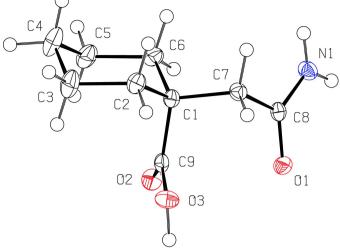
 $C_{9}H_{15}NO_{3}$ $M_{r} = 185.22$ Monoclinic, $P2_{1}/c$ a = 13.4973 (5) Å b = 8.0905 (2) Å c = 8.8358 (3) Å $\beta = 102.627 (2)^{\circ}$ $V = 941.53 (5) Å^{3}$ Z = 4

Data collection

Nonius KappaCCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{min} = 0.939, T_{max} = 0.990$ 10959 measured reflections 1842 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.103$ S = 1.051842 reflections 122 parameters H atoms treated by a mixture of independent and constrained refinement


Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O3-H3\cdots O1^i$	0.963 (18)	1.640 (19)	2.5829 (13)	165 (2)
$N1-H1\cdots O1^{ii}$	0.88	2.21	3.0680 (15)	164
$N1 - H2 \cdot \cdot \cdot O2^{iii}$	0.88	2.12	2.9635 (15)	162
Symmetry codes: (i)) $-x, y - \frac{1}{2}, \frac{1}{2} - z;$	(ii) $-x, \frac{1}{2} + y, \frac{1}{2} -$	$-z$; (iii) $x, \frac{1}{2} - y, z$	$-\frac{1}{2}$.

The carboxyl H atom was located in a difference Fourier synthesis and its positional parameters were refined. Other H atoms were included in the refinement at calculated positions, in the riding-model approximation, with C-H distances of 0.99 Å and N-H distances of 0.88 Å. The isotropic displacement parameters for all H atoms were set equal to $1.25U_{eq}$ of the carrier atom.

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduc-

Figure 1

The molecular configuration and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radius.

tion: *DENZO* and *COLLECT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

The authors thank the EPSRC National Crystallography Service (Southampton, England) and acknowledge the use of the EPSRC's Chemical Database Service at Daresbury (Fletcher *et al.*, 1996).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Fletcher, D. A., McMeeking, R. F. & Parkin, D. J. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.
- Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- LaRoche, S. M. & Helmers, S. L. (2004). JAMA, 291, 605-614.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.